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The suggestion that a "good" description of behavior is what a 
good ethologist considers to be a good description highlights a 
necessary but not sufficient condition for high-quality 
descriptions. This is because also good ethologists can err. 
How, then, if not on the basis of a claim for authority, can one 
tell the difference between high and low quality descriptions? 
One help comes from behavior genetics, where differences in 
behavior are used for the localization of genes on 
chromosomes. The QTL method used for such analysis 
depends critically on the quality of the measurements of 
behavior. If under the same standard conditions one inbred 
mouse strain is found in one laboratory to be significantly 
higher on a behavioral measure than another strain, and found 
to be significantly lower on the same measure in another 
laboratory, then the results are not replicable across 
laboratories and therefore useless for gene localization studies. 
Statistical replicability across laboratories thus becomes an 
objective yardstick for both the relevance of a behavioral 
measure and for the estimation of the quality of its 
measurement1,6.   

The high benchmark required for obtaining replicability, 
demands high quality data.  Obtaining such data is, therefore, 
not a luxury but a constraint dictated by the requirement of 
replicability. In kinematic studies this implies extensive 
preparation of the data for analysis, including elaborate 
smoothing5 and data segmentation procedures2 
(http://www.tau.ac.il/~ilan99/see/help/), since using first, 
second, or even third derivative measures like velocity, 
acceleration, jerk, and curvature drastically increases the 
system's noise, thus putting severe demands on the quality of 
these procedures.  

The raw data of the movement material collected by tracking 
systems are kinematic variables such as the time series of 
location data and their respective calculated derivatives (at the 
path scale), and movements of the parts of the body (interlimb 
coordination at the joints scale).  

Analysis reveals that these variables sometimes form discrete 
patterns. Discrete patterns thus constitute the results of the 
study, not its beginning. If these patterns have a fixed content, 
then this content can be described only once, for all patterns, 
and analysis can proceed by using these identical patterns as 
the building blocks of behavior. However, in the majority of 
cases the content of these patterns is variable. A premature 
encapsulation of kinematic features into such patterns, 
whether by a human observer or by a neural network trained 
by a human observer, yields "behavior patterns" whose 
variable content becomes inaccessible for further analysis. 
These packaged and labeled building blocks may be useful for 
counting frequencies in time and space, but they constitute 
"black boxes" as far as a moment-to-moment dynamic 
analysis is concerned. Hence the numerous ethograms - lists of 
inert labeled behavior patterns left by classical ethology, 
which are useful as first-approximation-descriptions but 
useless as far as the comparative dynamics of behavior are 
concerned.   

In the current computational age, segmentation and packaging 
of the stream of behavior into discrete patterns is, fortunately 
reversible and therefore not problematic. Since the time-series 
of kinematic data are indexed, segmentation is performed at 
the indexing level, leaving the kinematic time-series intact and 
accessible for any other type of analysis or any other type of 
segmentation. Dissecting the flow at the indexing level 
preserves the transparency of the patterns and allows one to 
segment the flow in several compatible ways, each 
highlighting other aspects of the organization of behavior. For 
example, in our studies of mouse exploratory behavior we 
segment the path traced by the mouse into lingering episodes 
and progression segments, based on their speed profile2. On 
the one hand, the topographical distribution of lingering is 
used to define preferred places4, and the probability of their 
performance at particular locations is used to define locational 
memory3. On the other hand, the speed profile within lingering 
episodes is used to calculate average lingering speed6  – a 
highly heritable and discriminative measure characterizing the 
level of activity during staying-in-place behavior across strains 
and preparations. By examining the content of lingering 
episodes at the joints scale, one can also readily establish the 
momentary level of familiarity the mouse has with the novel 
environment: in a novel environment mice perform horizontal 
head scans, whereas in a familiar one they tend to also 
perform vertical scans. Furthermore, a scan in a particular 
direction often forecasts the direction the mouse is going to 
take next. The mouse's location is disclosed at the path scale, 
whereas the direction of its attention and its intentions (see 
Fentress, this symposium) are disclosed at the joints scale. 
Segmentation thus delineates the high-level units, whereas the 
dynamic content of these units relates them to history or 
topography, or modulates their significance. The higher level 
progression segments and lingering episodes can further be 
assembled into incursions (forays into the center) and 
excursions (roundtrips from home base), which in turn can be 
used to define higher level constructs like familiarity8, 
locational memory3, and anxiety7.  
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